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2) Let α ∈ C(R) be a continuously differeniable function satisfying α(0) = 0 and α′(x) > 0 at each
x ∈ R. For each j ∈ N, define the function fj , gj ∈ C([0,1]) by

fj(x) = x +
1

j
, gj(x) =

jα(x)

1 + jα(x)

Evaluate limj→∞ ∫
1
0 fj(x)dgj(x).

Proof. First we compute g′j ,

g′j =
jα′(1 + jα) − jα′jα

(1 + jα)2
=

jα′

(1 + jα)2
> 0

The last inequality is because α′ > 0. So we know that gj is monotone increasing.

Note α is continuous so j/(1 + jα)2 is continuous. And by theorem 6.8, continuous functions are
integrable, so α′ ∈ R and j/(1 + jα)2 ∈ R. Then by theorem 6.12, g′j = jα

′/(1 + jα)2 ∈ R.

Note fj is obviously bounded on [0,1]. Now by theorem 6.17, we have ∫
1
0 fjdgj = ∫

1
0 fjg

′

jdx.

We would apply integration by parts here to ∫
1
0 fjg

′

jdx, and we have

∫

1

0
fjg
′

jdx = fj(1)g
′

j(1) − fj(0)g
′

j(0) − ∫
1

0
f ′jgjdx = (1 +

1

j
)

jα(1)

1 + jα(1)
− 0 − ∫

1

0

jα(x)

1 + jα(x)
dx

So the question wants

lim
j→∞
(1 +

1

j
)

jα(1)

1 + jα(1)
− lim

j→∞
∫

1

0

jα(x)

1 + jα(x)
dx

Let’s evaluate the second term first. We’ll show limj→∞ ∫
1
0

jα(x)
1+jα(x)dx = 1. For any ϵ > 0. We want

to show
lim
j→∞
∫

ϵ

0

jα(x)

1 + jα(x)
dx + lim

j→∞
∫

1

ϵ

jα(x)

1 + jα(x)
dx = 1

We can separate the interval of integration because jα(x)
1+jα(x) is continous and therefore integrable,

and we applied theorem 6.12. Note since α(0) = 0, α′ > 0, we know that 0 ≤ α(x), x ∈ [0, ϵ], so
0 ≤

jα(x)
1+jα(x) ≤ 1. By theorem 6.12 again, we have 0 ≤ ∫

ϵ
0

jα(x)
1+jα(x)dx ≤ ϵ, so

∣ lim
j→∞
∫

ϵ

0

jα(x)

1 + jα(x)
dx∣ = lim

j→∞
∫

ϵ

0

jα(x)

1 + jα(x)
dx < ϵ
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Now for limj→∞ ∫
1
ϵ

jα(x)
1+jα(x)dx. We’ve stablished jα(x)

1+jα(x) ∈ R. Now we show { jα(x)
1+jα(x)}j uniformly

converges to 1. Fix ϵ′ > 0.

∣
jα(x)

1 + jα(x)
− 1∣ = ∣

−1

1 + jα(x)
∣

Note ∀x ∈ [ϵ,1],0 < α(ϵ) ≤ α(x) ≤ M , where ∣α∣ ≤ M because α is continuous on a compact set
and therefore bounded. So we know α(x) is non-zero and bounded on [ϵ,1]. So there is a j big
enough such that ∣ −1

1+jα(x) ∣ < ϵ′∀x ∈ [ϵ,1], so { jα(x)
1+jα(x)}j → 1 uniformly. Now we apply theorem

7.14, and we get

lim
j→∞
∫

1

ϵ

jα(x)

1 + jα(x)
dx = ∫

1

ϵ
lim
j→∞

jα(x)

1 + jα(x)
dx = ∫

1

ϵ
1dx = 1 − ϵ

So we have

∣ lim
j→∞
∫

ϵ

0

jα(x)

1 + jα(x)
dx + lim

j→∞
∫

1

ϵ

jα(x)

1 + jα(x)
dx − 1∣ ≤ ϵ + (1 − ϵ) − 1 = 0

Since the absolute value of the difference of limj→∞ ∫
ϵ
0

jα(x)
1+jα(x)dx + limj→∞ ∫

1
ϵ

jα(x)
1+jα(x)dx and 1 is

less than or equal to 0, the two things must be equal.

Now we go on to compute limj→∞(1 +
1
j )

jα(1)
1+jα(1) .

lim
j→∞
(1 +

1

j
)

jα(1)

1 + jα(1)
= lim

j→∞

α(1)

1/j + α(1)
+ lim

j→∞

α(1)

1 + jα(1)
= 1 + 0 = 1

Collecting all our evidence, we see that

lim
j→∞
∫

1

0
fj(x)dgj(x) = lim

j→∞
∫

1

0
fjg
′

jdx = lim
j→∞
(1 +

1

j
)

jα(1)

1 + jα(1)
− lim

j→∞
∫

1

0

jα(x)

1 + jα(x)
dx = 1 − 1 = 0

So the answer is 0.
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1) Suppose that f ∶ R → R is differentiable at x0 ∈ R. Let {an}∞n=1 ⊂ (−∞, x0) and {bn}∞n=1 ⊂
(x0,−∞) be sequences that both converge to x0. Prove that

f(bn) − f(an)

bn − an
= f ′(x0)

(You may assume that x0 = 0).

Proof. By definition, we’ll show that for any ϵ > 0, there exists an N such that n > N implies
∣
f(bn)−f(an)

bn−an
− f ′(0)∣ < ϵ. Consider the following steps:

f(bn) − f(an)

bn − an
=
f(bn) − f(0)

bn − an
−
f(an) − f(0)

bn − an

=
bn

bn − an

f(bn) − f(0)

bn
−

an
bn − an

f(an) − f(0)

an

=
bn

bn − an

f(bn) − f(0)

bn
+
∣an∣

bn − an

f(an) − f(0)

an

The last equality is because an < 0. Since f ′(0) exists, we know that limt→0
f(t)−f(0)

t = f ′(0). And
since bn → 0, an → 0, by theorem 4.2, we know that f(bn)−f(0)

bn
= f ′(0) and f(an)−f(0)

an
= f ′(0). For

ϵ, we know there’s a large enough N such that

∣
f(bn) − f(0)

bn
− f ′(0)∣ < ϵ, ∣

f(an) − f(0)

an
− f ′(0)∣ < ϵ

Now note that bn − an = bn + ∣an∣. So bn
bn−an

+
∣an∣

bn−an
= 1. So we have

∣
f(bn) − f(an)

bn − an
− f ′(0)∣ = ∣

bn
bn − an

f(bn) − f(0)

bn
+
∣an∣

bn − an

f(an) − f(0)

an
−

bn
bn − an

f ′(0) −
∣an∣

bn − an
f ′(0)∣

= ∣
bn

bn − an
(
f(bn) − f(0)

bn
− f ′(0)) +

∣an∣

bn − an
(
f(an) − f(0)

an
− f ′(0))∣

≤ ∣
bn

bn − an
(
f(bn) − f(0)

bn
− f ′(0))∣ + ∣

∣an∣

bn − an
(
f(an) − f(0)

an
− f ′(0))∣

=
bn

bn − an
∣(
f(bn) − f(0)

bn
− f ′(0))∣ +

∣an∣

bn − an
∣(
f(an) − f(0)

an
− f ′(0))∣

<
bn

bn − an
ϵ +

∣an∣

bn − an
ϵ

= ϵ

as desired.
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2) ✓ Let {an}∞n=1,{bn}
∞

n=1 ⊂ (0,∞) be given.

(a) Assume that lim supn→∞(
an
bn
) < ∞. Prove there exists M ∈ R such that an ≤Mbn, for all n ∈ N.

Proof. Let lim supn→∞(
an
bn
) = L. By definition of lim sup, limn→∞(sup{ak/bk∣k ≥ n}) = L. By

the definition of limit, exists N such that n ≥ N implies sup{ak/bk∣k ≥ n} ≤ 2L, which means for
n ≥ N , ak ≤ 2Lbk. Note am ≤

am
bm

bm. Let M = 2L ∨max{ambm ∣m < N}.

(b) Suppose the sequence {anbn }
∞

n=1 converges in R. Must lim supn→∞(an/bn) be finite?

Proof. The sequence converges meaning lim{anbn } = L < ∞ exists. Remark given in class says
lim{anbn } = L iff lim sup{anbn } = lim inf{anbn } = L. So lim sup{anbn } must be finite also.

3) a) Suppose that {fn}∞n=1 is a Cauchy sequence from (C([0,1]), ρ∞). Determine whether {fn}∞n=1
must be uniformly equicontinuous.

Proof. Since {fn}∞n=1 is Cauchy, it is convergent in (C([0,1]), ρ∞) by theorem 7.8. By theorem
7.24, {fn}∞n=1 is equicontinuous.

b) Suppose that F ⊂ (C([0,1]), ρ∞) is closed and bounded but not uniformly equicontinuous.
Prove that F is not compact in (C([0,1]), ρ∞).

Proof. AFSOC F is compact. We’ll show that F is equicontinuous.

To prove equicontinuity, fix ϵ > 0. We want to show that there is a δ > 0 such that ∣x − y∣ < δ
implies ∣fx − fy∣ < ϵ for all f ∈ F .

{Nϵ/3(f)∣f ∈ F} is an open cover of F . By compactness, there’s a finite subcover, say centered
around f1, ..., fk. Note each fi is uniform continuous because the domain is compact. So for ϵ/3
there is δi such that ∣x− y∣ < δi imples ∣fix− fiy∣ < ϵ/3. Since we only have finite fi’s, we can take
δ =mini δi.

Fix some f ∈ F , there is some fi such that ∀x∣fx − fix∣ < ϵ/3. So let ∣x − y∣ < δ, we have

∣fx − fy∣ ≤ ∣fx − fix∣ + ∣fix − fiy∣ + ∣fiy − fy∣ < ϵ
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4) Question 4 is wrong as written, confirmed by author. New statement suggested by coauthor:

Use the Riemann condition to show that f ∈ Rα[0,2] where f(x) = πx
8 and

α(x) =

⎧⎪⎪
⎨
⎪⎪⎩

x + 1 0 ≤ x ≤ 1

4x 1 < x ≤ 2

Compute the value of the Riemann-Stieltjes integral ∫
2
0 f(x)dα.

Proof. The Riemann condition is Theorem 6.6 in the book: f ∈ R(α) on [a, b] if and only if for
every ϵ > 0 there exists a partition P such that U(P, f,α) − L(P, f,α) < ϵ. Note f is uniformly
continuous because it’s continuous on a compact interval. So for ϵ/5, there’s a δ > 0 such that
∣x − y∣ < δ imples ∣f(x) − f(y)∣ < ϵ/2. For this problem, we choose a partition P such that 1 = xj
for some j, and for every i, ∆xi < δ. So we get

U(P, f,α) −L(P, f,α) =
n

∑
n=1

(Mi −mi)∆αi

=

j

∑
n=1

(Mi −mi)(xi + 1 − xi−1 − 1) +
n

∑
n=j+1

(Mi −mi)4(xi − xi−1)

≤ ϵ/5
j

∑
n=1

(xi − xi−1) + ϵ/5
n

∑
n=j+1

(xi − xi−1)

=
ϵ

5
⋅ (1 − 0) + 4

ϵ

5
ϵ ⋅ (2 − 1)

= ϵ

So we can make U(P, f,α)−L(P, f,α) arbitrary close together, so by the riemann condition, f is
riemann-stieltjes integrable.

By Theorem 6.12, ∫
2
0 fdα = ∫

1
0 fdα + ∫

2
1 fdα.

By Theorem 6.12 ∫
1
0 fdα = ∫

1
0 fd(x + 1) = ∫

1
0 fdx + ∫

1
0 fd(1) = ∫

1
0

π
8xdx + 0 =

π
8
1
2 =

π
16 .

By Theorem 6.17, ∫
2
1 fdα = ∫

2
1 fd(4x) = ∫

2
1 f(4x)′dx = ∫

2
1 4fdx = ∫

2
1

π
2xdx =

π
2
3
2 =

3π
4 .

So ∫
2
0 fdα = π

16 +
3π
4 .
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5) Determine all the values of x ∈ R for which the series below converges

∞

∑
n=1

xn

1 + n∣x∣n

.

Proof. The series converges when x < 1 and diverges when x ≥ 1. Let ∣x∣ < 1. So we know
1
∣x∣

n
= (1 + p)n for some p > 0. Let ∣an∣ = ∣ xn

1+n∣x∣n ∣ and bn =
1
n2 . So we have

∣an∣

bn
=

n2∣x∣n

∣1 + n∣x∣n∣
=

n2∣x∣n

1 + n∣x∣n
=

n2

1
∣x∣n + n

=
n2

(1 + p)n + n

=
1

(1+p)n

n2 + 1
n

=
1

(1+p)n

n2 + 1
n

=
1

(1+p)n

n2 + 0

=
n2

(1 + p)n

Note that n2

(1+p)n = 0 by theorem 3.20 d). The second equality is because 1 + n∣x∣n is positive
anyway. The fourth equality is bcause 1

∣x∣

n
= (1 + p)n. The third last equality is because of limit

rules and (1+p)n

n2 ≠ 0. In conclusion, we have ∣an∣bn
= 0, this means that ∣an∣ < bn = 1

n2 for all large
enough n. By Weierstrass M-test, we know that the series converges for ∣x∣ < 1.

When x ≤ −1, we rearrange to the series ∑ (−1)n

1
∣x∣n
+n

is alternating. Note 0 ≤ 1
∣x∣

n
≤ 1, so 1

∣x∣n +n→∞,

so 1
1
∣x∣n
+n
→ 0. And note 1

1
∣x∣n
+n

is decreasing. So by theorem 3.43, the series converges.

Let x ≥ 1. So 0 < 1
xn ≤ 1.

xn

1 + n∣x∣n
=

1
1
∣x∣n + n

≥
1

1 + n
≥

1

2n

The first equality is because ∣xy∣ = ∣x∣∣y∣ by theorem 1.33 c) and 1 + n∣x∣n is positive. The first
inequality is because 1

∣x∣n ≤ 1. The last is because n ≥ 1. Since 1
2 ∑

1
n diverges, we know that the

series also diverges.
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3) Consider the sequence {xn}n≥1 defined by 0 < x1 < 1 and xn+1 = 1 −
√
1 − xn for n = 1,2, ....

Show that xn → 0 as n→∞. Also, show that xn+1

xn
→ 1

2 .

Proof. We’ll show the sequences is monotone decreasing and bounded. But first we show 0 <
(1 − xn) < 1 by induction.

BC: 0 < x1 < 1, so obviously 0 < (1 − x1) < 1.

IH: suppose 0 < (1 − xn−1) < 1

IS: taking the square root, we get 0 <
√
(1 − xn−1) < 1. By simple arithmetic, we get 1 > 1 −

√
(1 − xn−1) > 0. So 0 < xn < 1, implying 0 < (1 − xn) < 1. Since 0 < (1 − xn) < 1, we know

(1 − xn)
2
< (1 − xn)

(1 − xn) <
√
(1 − xn)

xn > 1 −
√
(1 − xn)

xn > xn+1

So the sequence is monotonic decresing, and note the terms are bounded below by 0, so by theorem
3.14, the sequence is convergent. So we can write, exists some L such that

lim
n→∞

xn = L = lim
n→∞

xn+1

So we get
xn+1 = 1 −

√
1 − xn

L = 1 −
√
1 −L

(1 −L)2 = (1 −L)

The only solutions are 1−L = 0 or 1−L = 1, yielding L = 0 or L = 1. L = 1 is not the limit because
the sequence is strictly monotone decresing and x1 < 1 for all n. So L = 0 has got to be the limit
of the sequence. So we’ve shown xn → 0.

Now we compute xn+1

xn
.

xn+1
xn
=
1 −
√
1 − xn
xn

=
(1 −
√
1 − xn)(1 +

√
1 − xn)

xn(1 +
√
1 − xn)

=
(1 − 1 + xn)

xn(1 +
√
1 − xn)

=
1

(1 +
√
1 − xn)

=
1

(1 +
√
1 − xn)

=
1

2

as desired.
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5) Find the domain of convergence and the sum of the series

∑
n≥0

(−1)n
x2n+1

2n + 1

Show how one may use the sum of the series to provide an approximation for π up to three
decimals. Be sure to provide all technical details.

Proof. The ratio test gives that the series converges if lim sup ∣
(−1)n+1x2n+3

2n+3
2n+1

(−1)nx2n+1 ∣ < 1. Note

lim sup ∣
(−1)n+1x2n+3

2n + 3

2n + 1

(−1)nx2n+1
∣ = x2 lim sup ∣

2n + 1

2n + 3
∣ = x2

So the series would converge if ∣x∣ < 1. And it would diverge if ∣x∣ > 1.

The series also converges at ∣x∣ = 1. ∑n≥0(−1)
n 1
2n+1 has the properties ∣ 1

2n+1 ∣ → 0 and monotone
decresing, so by theorem 3.43, the series converges.

This is the taylor expansion of arctan(x), so the sum of the series

∑
n≥0

(−1)n
x2n+1

2n + 1
= arctan(x)

To approximate π with the series which has radius of convergence of 1, we need to plug in some
x ∈ [−1,1]. By the unit circle, we know that arctan( 1

√

3
) = π

6 . So we can plug in 1
√

3
to the series,

evaluate the first few terms and multiply by 6. The number of terms to evaluate is given by: let
ϵ = 0.0001, since the series is convergent, there’s an N such that ∑n≥N(−1)

n x2n+1

2n+1 < ϵ. N is the
number of terms you should sum.
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1) Suppose a, b ∈ R with a < b and let f ∶ [a, b] → R be a differentiable function such that
f ′ ∶ [a, b] → R is continuous. Show that ∀ϵ > 0,∃δ > 0 such that for every x, y ∈ [a, b] with
∣x − y∣ < δ, we have

∣
f(x) − f(y)

x − y
− f ′(x)∣ < ϵ

Proof. Fix ϵ > 0. Since f ′(x) continuous, we know that there’s a ’. > 0 such that if ∣p − x∣ <

.then|f’(p)-f’(x)|<ϵ. Let =. ’.. So we have ∣x − y∣ < ..Bymeanvaluetheorem,wehave
f(x)−f(y)

x−y =

f ′(ξ)forξ ∈ (x, y), so we also have ∣ξ − x∣ < ’., so we have

∣f ′(ξ) − f ′(x)∣ = ∣
f(x) − f(y)

x − y
− f ′(x)∣ < ϵ

as desired.

3) Compute, with proof limk→∞∑
∞

n=1 n
−k

Proof. We’ll show that limk→∞∑
∞

n=1 n
−k = 1, which is equivalent to showing

lim
k→∞

∞

∑
n=2

n−k = 0

Note that we know ∑n=2
1
n2 = L for some L ∈ R because it is a convergent series.

Note for ∑n=2
1

n2+k , we have

∑
n=2

1

n2+k
= ∑

n=2

1

n2

1

nk
≤ ∑

n=2

1

n2

1

2k
=

1

2k
L

Let k go to infinity we have

lim
k→∞

∞

∑
n=2

n−k = lim
k→∞

∑
n=2

1

n2+k
= lim

k→∞

1

2k
L = L lim

k→∞

1

2k
= L ⋅ 0 = 0

as desired.
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4) a) Let f ∶ [1,2] → R be a continuous function. If ∫
2
1 x−nf(x)dx = 0 for all integers n ≥ 0, show

that f = 0.

Proof. We’ll apply the general Stone-Weierstrass theorem here: Let X be a compact metric space.
CR(X) be the set of continuous function from X into the reals. Let A ⊂ CR(X) be a subspace
satisfying 1 ∈ A, ∀a, b ∈ A,ab ∈ A and ∀x, y ∈ X,∃a ∈ A,a(x) ≠ a(y) then A is dense in CR(X).
Here we let A = {x−n∣n ∈ N0}. Note x0 = 1 ∈ A. x−jx−k = x−(j+k) ∈ A. 1

x would give different
answers for different input because it’s monotone on [1,2]. So we have that A is dense in CR(x).

Since f ∈ CR(x) and A is dense in it, we know that f is the uniform limit of {Pn} where
Pn = a0 + a1x

−1 + a2x
−2 + ... + akx

−k.

We’ll show ∫
2
1 f2 = 0.

∫

2

1
f2
= ∫

2

1
f(Pn)

= ∫

2

1
fPn

= a0∫
2

1
f + a1∫

2

1
x−1f + a2∫

2

1
x−2f + ... + ak ∫

2

1
x−kf

= 0 + 0 + ... + 0

= 0

The first equality is an application of theorem 7.14 because all Pn’s are integrable on [1,2] because
they’re continuous there. Second equality is theorem 6.12, third equality is by assumption. By
exercise 2 in chapter 6, we know that f2 = 0, which implies f = 0.

b) Let g; [1,2] → R be a differentiable function such that g′ ∶ [1,2] → R is continuous. If
∫
2
1 x−ndg(x) = 0 for all integers n ≥ 0, show that g is constant.

Proof. Since g′ is continuous, we know that g ∈ BV . So there’re monotone increasing functions
u, l such that g = u − l and g′ = u′ − l′. So we have

∫

2

1
x−ndg(x) = ∫

2

1
x−nd(u + l) = ∫

2

1
x−ndu + ∫

2

1
x−ndl

Note since u, l monotone increasing and x continuous, by theorem 6.9, u, l ∈ R. So by theorem
6.17, we can write

∫

2

1
x−ndu + ∫

2

1
x−ndl = ∫

2

1
x−nu′dx + ∫

2

1
x−nl′dx = ∫

2

1
x−n(u + l)′dx

By the assumption, we know ∫
2
1 x−n(u + l)′dx = 0 for all n ≥ 0, then apply part a) we know

(u + l)′ = g′ = 0. By calc 1, we know g is a constant.

10
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5) ✓ Prove the following special case of Dini’s Theorem: if (fn ∶ [0,1] → R)∞n=1 is decreasing se-
quence oof continuous functions such that limn→∞ fn(x) = 0 for all ∈ [0,1], then (fn)∞n=1 converges
uniformly to 0. (You should not use any form of Dini’s theorem without proof.)

Proof. (1) By definition of uniform convergence, we’ll show ∀ϵ > 0,∃N ∈ N such that n ≥ N implies
∀x ∈ [0,1], ∣fn(x) − 0∣ < ϵ. Fix some ϵ > 0. For each n, define set Kn = {x ∈ [0,1] ∶ ∣fn(x)∣ ≥ ϵ}.
Note that [−ϵ, ϵ] is a closed interval, and since fn is continuous, we know that Kn is also closed.
Since Kn ⊂ [0,1] and [0,1] compact, we know that Kn is also compact.

Now, since fn ≥ fn+1, we have that Kn ⊃ Kn+1. Since for any x ∈ [0,1], fn(x) converges to 0, by
definition, there is some N such that ∣fN(x)∣ < ϵ, i.e. x ∉KN . So ⋂Kn is empty.

We know by theorem 2.36 that nested sets of "non-empty" compact set have non-empty intersec-
tion. So by contrapositive, we must have that some KN is empty, which also means all Kn where
n ≥ N are empty since they’re nested. This corresponds to for n ≥ N,∀x ∈ [0,1], ∣f(x)∣ < ϵ, as
desired.

Proof. (2) Here we’ll harness the finiteness of the subcovers of compact sets. Fix ϵ > 0. Define
On = f

−1
n ((−∞, ϵ)) = f−1n ([0, ϵ)). The last equality is because fn(x) ≥ 0 for all x because fn(x) is a

decreasing sequence that converges to 0. Since (−∞, ϵ) open, and f continuous, we know that On

is open. Since fn ≥ fn+1, we also know that On ⊂ On+1. For each x ∈ [0,1], since fn(x) converges
to 0, exists some n such that x ∈ On. So the On’s is an open cover of [0,1]. By compactness,
there’s a finite subcover. And since On ⊂ On+1, the one with the largest index N covers [0,1].
Like [0,1] ⊂ ON ⊃ [0,1], so ON = [0,1]. And for any n ≥ N , we know [0,1] ⊂ On ⊂ ON = [0,1], so
On = [0,1] also for any n ≥ N . This means for n ≥ N , ∀x ∈ [0,1], ∣fn(x)∣ < ϵ by definition of the
On’s. We’re done.

11
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6) Let f ∶ [0,1] → R be a continuous function

a) Show ∫
1
0 f(x

1
n )dx = f(1)

Proof. Recall Theorem 7.16 which states if on interval [a, b], α is monotone increasing, fn ∈

R(α)∀n, fn → f uniformly, then ∫
b
a fdα = ∫

b
a fndα.

Since f, x1/n continuous, their composition is continuous. And by theorem 6.8, f(x1/n) ∈ R

Since f and x1/n is continuous on [0,1], the limit notation can move inside

f(x1/n) = f(x1/n) = f(x0) = f(1)

By the theorem, we have ∫
1
0 f(x

1
n )dx = ∫

1
0 f(1)dx = f(1), as desired.

b) If f(x) > 0 on [0,1], show ∫
1
0 f(x)1/ndx = 1.

Proof. Again, similare to above. f(x)1/n is continuous on [0,1]. So

f(x)1/n = f(x)1/n = f(x)0 = 1

By the theorem, we have ∫
1
0 f(x)

1
ndx = ∫

1
0 1dx = 1, as desired.

12
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5) Suppose that (an)∞n=1, (bn)
∞

n=1 are sequences of strictly positive real numbers such that ∑∞n=1 bn
converges, and suppose that for each integer n ≥ 1, we have an+1

an
≤

bn+1
bn

. Show that ∑∞n=1 an
converges.

Proof. Rearranging an+1
an
≤

bn+1
bn

, we get an+1
bn+1
≤ an

bn
. Let constant C = a1

b1
. We know that for all n,

an
bn
≤ a1

b1
= C, so

∣an∣ = an ≤ Cbn

Note that ∑∞n=1Cbn = C∑
∞

n=1 bn which converges. By comparison test, ∑∞n=1 an converges as well.

13
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1) Suppose (X,d), (Y, ρ) are metric spaces; (Y, ρ) is compact; and ϕ ∶ Y →X is a continuous and
onto function.

a) A well-know theorem states that if F ⊂ Y is compact, then ϕ(F ) is also compact. Prove this
theorem, and conclude that (X,d) is a compact metric space.

Proof. See theorem 4.14.

b) Suppose G ⊂X and ϕ−1(G) is an open set. Prove that G is an open set.

Proof. It’s equivalent to proving Gc is closed by theorem 2.23. Also by theorem 2.23, since
ϕ−1(G) is open, (ϕ−1(G))c is closed in the compact set Y . And by theorem 2.35, (ϕ−1(G))c is
also compact. Since ϕ continuous, by theorem 4.14, ϕ((ϕ−1(G))c) is compact, which is closed by
theorem 2.34. Now we’ll show ϕ((ϕ−1(G))c) = Gc.

We’ll write out the set notation for each set.

ϕ−1(G) = {y ∈ Y ∣ϕ(y) ∈ G}

(ϕ−1(G))c = {y ∈ Y ∣ϕ(y) ∉ G}

ϕ((ϕ−1(G))c) = {ϕ(y) ∈X ∣ϕ(y) ∉ G} ⊂ Gc

To show the other containment, let x ∈ Gc, so ϕ−1(x) ⊂ (ϕ−1(G))c. And {x} = ϕ(ϕ−1(x)) ⊂
ϕ((ϕ−1(G))c), as desired.

2) Let (an)∞n=1 be a bounded sequence of real numbers. Be sure to include all details, prove that

lim inf
n→∞

an ≤ lim inf
n→∞

a1 + ... + an
n

Proof. Fix some N ∈ N, for n ≥ N we have

a1 + ... + an
n

=
a1 + ... + aN

n
+
aN+1 + ... + an

n

≥
a1 + ... + aN

M
+
n −N

n
inf{an∣n ≥ N}

≥
a1 + ... + aN

M
+ inf{an∣n ≥ N}

14
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In the second line, let M ≥ n. Take M →∞, we get

a1 + ... + an
n

≥ inf{an∣n ≥ N}

Take the infn≥N of both sides we get

inf
n≥N

a1 + ... + an
n

≥ inf
n≥N

inf{an∣n ≥ N} = inf
n≥N

an

Then take N →∞, we get
lim
N→∞

inf
n≥N

a1 + ... + an
n

≥ lim
N→∞

inf
n≥N

an

as desired.

3) Suppose f ∶ [a, b] → R is Riemann integrable and ∫
b
a ∣f(t)∣dt = 0.

a) If f is continuous, prove that f(t) = 0 for every t ∈ [a, b].

Proof. Proof 1 (black box proof):

Note since f continuous, ∣f ∣ is also continuous. Obviously ∣f ∣ ≥ 0, and we’re given ∫
b
a ∣f ∣dx = 0.

By exercise 6.2, we know that ∣f ∣ = 0, which implies f = 0.

Proof 2 (low level proof):

AFSOC, exsits t ∈ [a, b] such that ∣f(t)∣ > 0. Since f is continous, ∣f ∣ continuoous. Fix 0 < ϵ <
∣f(t)∣, there is a δ such that for all x with ∣x− t∣ < δ, we have ∣∣fx∣ − ∣ft∣∣ < ϵ, i.e. ∣f(x)∣ ≥ ∣ft∣ − ϵ > 0
.

Now let’s examine L(P, f) for P with ∆xi < δ. Say t ∈ [xi, xi−1].

∫

b

a
fdx ≥ L(P, f) =

n

∑
k=1

inf ∣f(x)∣∆xk ≥ inf ∣f(x)∣(xi − xi−1) ≥ (∣f(t)∣ − ϵ)(xi − xi−1) > 0

This is because since ∆xi < δ any x ∈ [xi, xi−1] would be with in ϵ of ∣f(t)∣. And we know
∣f(x)∣ ≥ ∣ft∣ − ϵ > 0. And ∆xi > 0 by definition.

b) Give an example (with proof) of a non-zero Riemann integrable function such that ∫
b
a ∣f ∣dx = 0.

Proof. Define f to be 0 on [0,1) and f is 1 at x = 1. This is a non-zero function. And ∫
b
a fdx =

∫
b
a ∣f ∣dx = 0. Proof is trivial, omitted.
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5) Suppose (an) is a decreasing sequence of real numbers and ∑∞n=1 an converges. Prove that
limn→∞ nan = 0.

Proof. Since ∑∞n=1 an converges, by Theorem 3.23, limn→∞ an = 0. Since an’s are decreasing, this
implies an ≥ 0.

Since ∑∞n=1 an converges, there’s an N ∈ N such that ∀n,m ≥ N we have ∣∑m
k=n ak∣ < ϵ (Theorem

3.22). So for n ≥ N , we have

∣nan∣ = nan = an + ... + an ≥ an + an+1 + ... + a2n = ∣
2n

∑
k=n

ak∣ < ϵ

as desired.
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6) For x ∈ R, consider the series, ∑∞n=1
1

n2+x2 .

a) Prove this series converges for every x ∈ R.

Proof. Note 1
n2+x2 > 0, so ∣ 1

n2+x2 ∣ =
1

n2+x2 ≤
1
n2 . We know ∑ 1

n2 converges. By comparison test,
∑
∞

n=1
1

n2+x2 also converges, independent of x.

b) Set f(x) = ∑∞n=1
1

n2+x2 . Prove that f is differentiable at each x ∈ R. Also, find a formula for
f ′(x) (in terms of a series), being sure to justify that your formula is correct.

Proof. We’ll use theorem 7.17 with fk(x) = ∑
k
n=1

1
n2+x2 . Note fk is differentiable, just take the

derivative term by term. Note for x0 = 0, {fk(0) = ∑k
n=1

1
n2 } converges by theorem 3.28. The

last thing to show is that {f ′k(x) = −2∑
k
n=1

x
(n2+x2)2

} converges uniformly. We’ll use the M-test
(Theorem 7.10) to show the derivative sequence converges uniformly. i.e. we’ll show

∣x∣

(n2 + x2)2
≤

1

n2

Equivalently, we’ll show
∣x∣n2

≤ n4
+ x4 + 2n2x2

If ∣x∣ ≥ 1, then we know that ∣x∣n2 ≤ n2x2 ≤RHS. If ∣x∣ < 1, then ∣x∣n2 ≤ n2 ≤ n4 ≤ RHS because
n ≥ 1. So we can now apply theorem 7.17, we see that f ′(x) = limn→∞ f ′n(x) = ∑

∞

n=1
−2x

(n2+x2)2
,

showing f is differentiable at each x ∈ R and giving a formula for it.
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1) Let {an}∞n=1 ⊂ (0,∞) and c > 0 be given. Suppose that limn→∞ an = 0 and ∑∞n=1 an diverges.
Prove that there exists a subsequence {ank

}∞k=1 such that ∑∞k=1 ank
= c.

Proof. ✓ Since each an is positive, we know that {Sn} the sequence of partial sums is monoton-
ically increasing. And ∑an must diverge to infinity instead of diverging in oscillatiion. WLOG
let a1 ≤ c, otherwise just consider a later segment of the sequence where this is true. Let N be
the least index such tha SN ≥ c, and SN−1 < c. Put the terms in SN−1 in the subsequence {ank

}.
Later terms will be picked as follows: pick the largest available an such that the running sum of
ther terms added to {ank

} is less than c. We can always find such a term because liman = 0.

The limk→∞ Snk
= c. Fix ϵ > 0. We’ll show that exists K such that SnK

≥ c − ϵ. So we’ve
picked the terms in SN−1 to be in {ank

}. If SN−1 ≥ c − ϵ, then we’re done. If SN−1 < c − ϵ,
let c′ = c − ϵ − SN−1. Again, there’s an index N ′ such that n ≥ N ′ means an ≤ c′. Consider
the subsequence {aN ′ , aN ′+1, aN ′+2, ...}. Since there are only finite many terms before aN ′ , the
subsequence above have sum that diverges to infinite and each term in the above subsequence
have entries no larger than c′. So there exsits a least index N ′′ such that aN ′ +aN ′+1+ ...+aN ′′ ≥ c′.
Since we’re picking the largest available an to be in {ank

}, each new term added to {ank
} which

add up to c− ϵ can only be greater than or equal to each of the aN ′ +aN ′+1, ..., aN ′′ , so there must
be a K such that SnK

≥ c − ϵ. So we’re done.

2) Let {an}∞n=1,{bn}
∞

n=1 ⊂ R be bounded sequences, and define the sets

A ∶= {an},B ∶= {bn},C ∶= {an + bn}

Prove or provide a counterexample each of the following statements.

a) If a ∈ R is a limit point for A and b ∈ R is a limit point for B, then a + b is a limit point for C.

Proof. False. Consider {an}∞n=1 = {0,2,0,2,0,2, ...} and {bn}∞n=1 = {3,0,3,0,3,0, ...}. It’s obvious
that 2 is a limit point of A, 3 is a limit point of B. But 5 is not a limit point of C because
{an + bn}

∞

n=1 = {3,2,3,2,3,2, ...} with limit points 3 and 2.
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6) The parts of this problem are not connectec. a) Let {an}∞n=1 ⊂ R and a strictly increasing
sequence {xn}∞n=1 ⊂ (0,1) be given. Assume that ∑∞n=1 an is absolutely convergent, and define
α ∶ [0,1] → R by

α(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

an x = xn

0 otherwise

Prove or disprove: α has bounded variation on [0,1].

Proof. Yes. Fix any partition P . Let N be the largest index such that xN ∈ P . We have

V (P,α) =
n

∑
i=1

∣α(pi) − α(pi−1)∣

If pi, pi−1 ∉ {xn}, then we have ∣α(pi) − α(pi−1)∣ = 0. If only one of pi, pi−1 is in {xn}, WLOG say
pi = xn. Then ∣α(pi) − α(pi−1)∣ = ∣an∣ ≤ 2∣an∣. If both pi, pi−1 ∈ {xn}, say pi = xk, pi−1 = xj , j < k.
Note ∣α(pi) − α(pi−1)∣ = ∣ak − aj ∣ ≤ 2max(∣ak∣, ∣aj ∣) ≤ 2∣ak∣ + 2∣aj ∣. So then we have

n

∑
i=1

∣α(pi) − α(pi−1)∣ ≤
N

∑
i=1

4∣ai∣ ≤ 4
∞

∑
i=1

∣ai∣ < ∞

By our reasoning above, if ∣α(pi) − α(pi−1)∣ covers any xn’s, it’s smaller than twice the absolute
value of the xn’s it covers. Each ai could be appear in the sum twice, because point xi is used
twice in the partition. Hence the factor of 4 in the sum. It might not cover every xn upto the
largest index covered N , hence the first inequality. The last inequality is because {an} converges
absolutely. This is for an arbitrary P , so α is of bounded variation.

b) Suppose that f ∶ [0,1] → R is Riemann-Stieltjes integrable with respect to a non-decreasing
function β ∶ [0,1] → [0,∞). Prove that f is Riemann-Stieltjes integrable with resepct to the
function β2.

Proof. Since β is monotone increasing and x is continuous, by Theorem 6.9, β ∈ R(x), which
implies that β is bounded, i.e. ∣β∣ = β < B for some real B (the last implication is also used in the
first sentence of the proof of theorem 6.20, so proof omitted here).

Alternate argument for β being bounded: Since β monotone on [0,1], β has bounded variation,
which implies it’s bounded. By theorem 6.6, to show f ∈ β , we’ll show for all ϵ > 0, there is a
partition P such that U(P, f, β2) −L(P, f, β2) < ϵ.

U(P, f, β2
) −L(P, f, β2

) = ∑(Mi −mi)(β
2
i − β

2
i−1)

= ∑(Mi −mi)(βi − βi−1)(βi + βi−1)

= ∑(Mi −mi)(βi − βi−1)βi +∑(Mi −mi)(βi − βi−1)βi+1

≤ 2B∑(Mi −mi)(βi − βi−1)

Since f ∈ R(β), there is a P such that ∑(Mi −mi)(βi − βi−1) <
ϵ
2B . This P works.
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2) Let {an}∞n+1 ⊂ (0,∞) be given, and assume that ∑∞n=1 an converges.

a) Show that ∑∞n=1
an

1+an
converges and ∑∞n=1

1
1+an

diverges.

Proof.

∣
an

1 + an
∣ =

1

1 + an
an ≤ an

All because an > 0. Then by comparison test, the desired series converges.

Since ∑∞n=1 an converges, by theorem 3.23, liman = 0. So for ϵ = 1, there exist N such that all
n > N have an < 1, so 1 + an < 2, so 1

1+an
> 1

2 . And ∑ 1
2 diverges. Then by comparison test, the

desired series diverges.

b) Suppose that {bn}∞n=1 ⊂ R satisfies ∣bn+1−bn∣ ≤ an, for every n ∈ N. Prove {bn}∞n=1 is convergent.

Proof. If we can show that {bn}∞n=1 is cauchy, then we’ve shown it’s convergent. To show cauchy:
∀ϵ > 0,∃N such that for all m ≥ n ≥ N implies ∣bn − bm∣ < ϵ. Fix ϵ > 0.

Since ∑∞n=1 an converges, we know that exists Na such that for all m ≥ n ≥ Na implies

∣an + an+1 + ... + am∣ = an + an+1 + ... + am < ϵ

Let N = Na, then we have

∣bn − bm∣ = ∣bn − bn+1 + bn+1 − bn+2 + bn+2 − bn+3 + bn+3 − ... − bm−1 + bm−1 − bm∣

= ∣bn − bn+1∣ + ∣bn+1 − bn+2∣ + ∣bn+2 − bn+3∣ + ∣bn+3 − ... − bm−1∣ + ∣bm−1 − bm∣

≤ an + an+1 + ... + am−1

< ϵ

as desired.
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3) Let {a′n} be any rearrangement of an infinite sequence {an}. Assume ∑an converges absolutely.
Prove ∑a′n = ∑an.

Proof. ✓

We’ll show ∑a′n−∑an = 0, which is equivalent to showing the sequence of partial sums {sn−s′n} →
0. Fix ϵ > 0. Since ∑an converges absolutely, exsits N such that m,n > N implies ∑n

m ∣ai∣ < ϵ.
Fixing n = N + 1 and letting m go to infinity, we would get ∑N+1 ∣an∣ < ϵ. Let N ′ be large enough
such that {a′n}n≤N ′ ⊃ {an}n≤N . Let M = max(N ′,N). So sM − s

′

M only has terms with indices
greater than N , so ∣sM − s′M ∣ ≤ ∣∑N+1 an∣ ≤ ∑N+1 ∣an∣ < ϵ, as desired.

5) Let f ∶ [a, b] → R. Suppose f ∈ BV [a, b]. Prove f is the difference of two increasing functions.

Proof. Let U(x) = V x
a (f), L(x) = V

x
a (f) − f(x). Obviously, U(x) − L(x) = f(x). Now just prove

they’re increasing. Let x1 ≤ x2. U(x) is the "accumulation" of vertical distance traversed by f , so
it’s only increasing. In other words, U(x2)−U(x1) = V x2

x1
(f) < ∞ since f ∈ BV [x1, x2] ⊂ BV [a, b].

V x2
a (f) − V

x1
a (f) = V x2

x1
(f) ≥ ∣f(x2) − f(x1)∣ ≥ f(x2) − f(x1). Rearranging we have L(x2) =

V x2
a (f) − f(x2) ≥ V

x1
a − f(x1) = L(x1), as desired.
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2) Define f ∶ [0,1] → [−1,−1] by

f(x) =

⎧⎪⎪
⎨
⎪⎪⎩

x sin(1/x) 0 < x ≤ 1

0 x = 0

a) Determine, with justification, whether f is of bounded variation on the interval [0,1].

Proof. Note sin(x) is 1 at (2n+1)π2 and 0 at (2n)π2 . So let partition Pn = {0,
2
nπ ,

2
(n−1)π , ...,

2
π ,1},

then we’d have sin(1/xi) oscillating between 0,1. WLOG say sin( 2
nπ ) = 1. Then

n

∑
i=1

∣f(xi) − f(xi−1)∣ = ∣
2

nπ
sin(

nπ

2
) − 0∣ +

n−1

∑
i=2

∣
2

iπ
sin(

iπ

2
) −

2

(i − 1)π
sin(
(i − 1)π

2
)∣ + ∣

2

π
sin(

π

2
) − sin(1)∣

≥ ∣
2

(n − 2)π
∣ + ∣

2

(n − 2)π
∣ + ∣

2

(n − 4)π
∣ + ∣

2

(n − 4)π
∣ + ... + ∣

2

π
∣

=
2

π
(

2

n − 2
+

2

n − 4
+ ... + 1)

≥
2

π
(

1

n − 1
+

1

n − 2
+

1

n − 3
+

1

n − 4
+ ... + 1)

Note as we let n go to infinity, the above sum diverges. So the total variation of f is not finite.

b) Determine, with justification, whether f is continuous on the interval [0,1].

Proof. Note 1/x is continuous on (0,1], as well as sin(x), so by theorem 4.7, f(x) is continuous
on (0,1]. Now to determine if it’s continuous at 0, lets see if limx→0 f(x) = f(0) = 0. If it is, then
by definition of continuity, it’s continuous at 0. Fix ϵ > 0. Let δ = ϵ. Then if ∣x∣ < δ, we have

∣x sin(1/x)∣ ≤ ∣x∣ < δ = ϵ

as desired. So f is continuous on [0,1]
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1) Let f ∶ R → R be a continuous function on R. Fix c ∈ R, and suppose that f has the following
property: there is an L such that for each ϵ > 0 there is a δ > 0 such that

∣
f(r) − f(c)

r − c
−L∣ < ϵ

whenever r ∈ Q and 0 < ∣r − c∣ < δ. Prove that f is differentiable at c and that f ′(c) = L.

Proof. By definition 5.1, we’ll show that for t ∈ R, t ≠ c, limt→c
f(t)−f(c)

t−c = L. Unfolding the
definition of the limit, we wish to show that ∀ϵ > 0,∃δ > 0 such that ∣f(t)−f(c)t−c −L∣ < ϵ.

Fix ϵ > 0. By assumption of the question, there is a δ1 > 0 such that

∣
f(r) − f(c)

r − c
−L∣ < ϵ/2

whenever r ∈ Q and 0 < ∣r − c∣ < δ1. If t ∈ Q, then let ∣t − c∣ < δ1, we’d have ∣f(t)−f(c)t−c −L∣ < ϵ/2 < ϵ,
as desired.

Now suppose that t is not rational. We want to show that there is a rational r close to t such
that ∣f(t)−f(c)t−c −

f(r)−f(c)
r−c ∣ < ϵ/2. Since f(x) is continuous on R, we know that f(x) − f(c) is also

continuous on R. 1
x−c is continuous on R/{c}, so we know f(x)−f(c)

x−c is continuous on R/{c} as well.
So we have limy→x

f(y)−f(c)
y−c =

f(x)−f(c)
x−c . By definition of the limit, we know that for ϵ/2, exists

δ2 > 0 such that ∣y − x∣ < δ2 implies ∣f(y)−f(c)y−c −
f(x)−f(c)

x−c ∣ < ϵ/2.

Note t ≠ c by set up. Since the rational numbers are dense in the reals, t is a limit point of the
rational numbers. So for some δ2 ∈ (0, ∣t − c∣) there is an r ∈ Q in the neighborhood Nδ2(t), i.e.
∣r − t∣ < δ2. And note that r ≠ c also because δ2 < ∣t − c∣. So we can apply our result in the above
paragraph, we have

∣
f(r) − f(c)

r − c
−
f(t) − f(c)

t − c
∣ < ϵ/2

Now let δ = min{δ1, δ2, δ1 − δ2}. And we insist ∣t − c∣ < δ ≤ δ1 − δ2 Recall we had ∣r − t∣ < δ2 so
∣r − c∣ ≤ ∣r − t∣ + ∣t − c∣ < δ1 − δ2 + δ2 = δ1. So by assumption we also have

∣
f(r) − f(c)

r − c
−L∣ < ϵ/2

Combining the above two inequalities, we have that if ∣t − c∣ < δ, then

∣
f(t) − f(c)

t − c
−L∣ ≤ ∣

f(t) − f(c)

t − c
−
f(r) − f(c)

r − c
∣ + ∣

f(r) − f(c)

r − c
−L∣ < ϵ/2 + ϵ/2 = ϵ

So δ =min{δ1, δ2, δ1 − δ2} works for both when f is rational or irrational.
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Question 1 ✓

a) Let (an)n∈N and (bn)n∈N be bounded sequences of positive real numbers. Suppose that ∑ bn
is convergent. Show that ∑anbn is also convergent.

Proof. Since they’re bounded, an <M for all n for some M . And

∑anbn < ∑Mbn

The right hand side is convergent. Since both series have positive entries, ∣anbn∣ = anbn < Mbn.
By comparison test, the LHS converges.

b) Let y ∈ R and f ∶ R→ R be given. Suppose for every sequence (xn) we have inf ∣f(xn)−f(y)∣ ≤
inf ∣xn − y∣. Prove that f is continuous at y.

Proof. Recall theorem 4.2: limx→y f(x) = f(y) if and only if f(xn) = f(y) for every sequence {xn}
with xn ≠ x but xn = y.

Fix some sequence xn → y. So we know that ∣xn − y∣ = 0. Note ∣xn − y∣ = inf ∣xn − y∣, so we have

0 ≥ inf ∣f(xn) − f(y)∣ ≥ 0

The last inequality is because every term is positive in the absolute value sign. So we know
inf ∣f(xn) − f(y)∣ = 0. By the definition of lim inf, this means that out of all subsequential limits,
the lowest one could only be as low as 0. Now we show that there’re no subsequencial limits
strictly greater than 0. AFSCO, {xnk

} is a subseq with limk→∞ ∣f(xnk
)−f(y)∣ = ϵ > 0. Note since

{xnk
} is a subsequence, it has the same limit as {xn}. So limk→∞ ∣xnk

−y∣ = 0. Again, recall if the
limit exsits, then the limit is equal to the lim inf. Now we have

lim
k→∞

inf ∣xnk
− y∣ = 0 ≥ lim

k→∞
inf ∣f(xnk

) − f(y)∣ = ϵ > 0

We have shwon 0 > 0, which is absurd. So there can’t be any other subsequence with limk→∞ ∣f(xnk
)−

f(y)∣ > 0, so the ∣f(xn) − f(y)∣ = 0, implying f(xn) = f(y), as desired. So f is continuous.
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