
Question

Let G be a connected regular bipartite graph with bipartition X,Y . Prove that for all x ∈X and
y ∈ Y the graph G′ = G/{x, y} has a perfect matching.

Non-constructive solution: We’ll show G′ satisfies Hall’s condition. Suppose S ⊆ X has
NG′(S) = T with ∣T ∣ < ∣S∣. We know that in G there are d∣S∣ edges leaving S, and they must all
go to T ∪ {y}, a set of size at most ∣S∣. Since at most d∣S∣ edges can arrive there, it must be that
NG(S) = T ∪{y} and NG(T ∪{y}) = S. But then S ∪T ∪{y} is a component of G not containing
x, a contradiction.

Constructive solution: Let G be k-regular. By a corollary of Hall’s theorem, G being regular
biparite means G has a perfect matching M and ∣X ∣ = ∣Y ∣ by counting edges.

If xy ∈ M , then we’re done. Just remove xy from M and the remaining matching is a perfect
matching on the rest of the vertices.

Now suppose that xs ∈ M, ty ∈ M where s ≠ y, t ≠ x. Since G is connected, there exists a path
from s to t. In particular, I can choose this st-path to be M -alternating. In fact, I’m going to
show that we can visit every vertex in G by going on one M -alternating walk, which implies the
previous sentence.

Claim: Start from X. Going from X to Y , put the unique M -edge in our walk. Going from Y
to X, pick any non-M edge to travel back to X, we can visit all the vertices in this way.

Pf of claim:

Let L ⊆X be the vertices visited in X, let R ⊆ Y be vertices visited in Y . Since we get no choice
going from X to Y, the burden of expanding the frontier of our territory falls on the choices the
Y vertices make. Of course we want to keep seeing new vertices so that we’re guaranteed to visit



all the vertices during our walk.

All is well unless if we stand on y ∈ Y and we’ve got more vertices to see (i.e. X/L ≠ ∅), but all
our edges extend into the old vertices. We can phone a friend in set R. Since we’ve walked down
in zig-zag, we can walk back up our M -alternating path to find any vertex in R. If any one vertex
in R can get into the new territory, we’re good, we can keep going. A terrible scenario would be
that none of R can get into unchartered land, that means all k∣R∣ edges go into L. And since
for each vertex in R, it must come from a vertex in L via an M edge, and we’d said that we’ve
landed in Y where this whole ordeal started, so ∣L∣ = ∣R∣. So the average number of edges from R

that each vertex in L is incident to is k∣R∣
∣L∣ = k.

Since each vertex can only be incident to at most k edges because G is k-regular, we know that
each vertex in L is incident to exactly k edges, all coming from/going into R. So the subgraph
L∪R is not conneced to the rest of the graph in G, so G is disconnected, which is a contradiction.
So our imaged dilemma of being stuck in Y while there’re more vertices to see is non-existent.
So we can get to all vertices in X. And by the highway paved by M -edges, if we see vertices in
X, we can travel through the M -edges to see their matched vertex in Y . Since M is a perfect
matching, we also see everyone in Y . So our M -alternating walk sees everyone. (end pf of claim)

In particular, we have an M -alternating walk from s to t, from which we can extract an M -
alternating path, denoted P = sp1...pnt.

Note xPy = xsp1...pnty is an M -alternating path starting and ending with M -edges. Now we
discard the M -edges in xPy, and add the non-M edges to M . Now x and y are not matched
because edges xs and ty left the matching, but everyone else in {s, p1, ..., pn, t} are still matched.

For other vertices not in the xPy path, their matching status hasn’t changed. We can now
removed the unmatched x and y, and the rest of the vertices are perfectly matched, as dicussed
above.
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