
June 2023

Question 1 Recall that if π = π1π2...πn is a permutation of [n] then we say that the pair of
indices (i, j) is an inversion of π if i < j but πi > πj . For n ≥ 1 let In be the total number of
inversions in all permutations of [n]. For instance, I1 = 0, I2 = 1, I3 = 9.

a) Prove that for all positive integers n we have

In+1 = (n + 1)In + n!(
n + 1

2
)

Proof. We’ll partition the counting in to the position of the element n+1. Say if n+1 is in position
i, then for each of the n! permutation π of the rest of the n elements, the number of inversion of
that specific permutation is inv(π) + i. Now let’s sum over all n + 1 positions that element n + 1
could be. Let’s denote πi to be permutation of [n + 1] with n + 1 in position i. And note since
the position of n + 1 is fixed, πi is essentially a permutation of [n]

n+1
∑
i=1
∑

πi∈Σn

(inv(πi) + (n + 1) − i) =
n+1
∑
i=1
∑

πi∈Σn

inv(πi) +
n+1
∑
i=1
∑

πi∈Σn

(n + 1) − i)

=
n+1
∑
i=1

In +
n+1
∑
i=1

n!(n + 1 − i)

= (n + 1)In + n!
n

∑
k=0

k

= (n + 1)In + n!
n(n + 1)

2

= (n + 1)In + n!(
n + 1

2
)

b) Use the aboverecurrence to deduce that for all n ≥ 1

In =
n!

2
(
n

2
)

Proof. Look for the pattern. Iteratively substitute In into In+1 and simplify to get

In+1 = (n + 1)nIn−1 +
(n + 1)!

n
(
n

2
) +
(n + 1)!

n + 1
(
n + 1

2
)

= (n + 1)n(n − 1)In−2 +
(n + 1)!

n − 1
(
n − 1

2
) +
(n + 1)!

n
(
n

2
) +
(n + 1)!

n + 1
(
n + 1

2
)

...

=
n+1
∑
k=1

(n + 1)!

k
(
k

2
)



The above pattern can be proven with induction which is obvious, so omitted. So we obtain the
equation In = ∑

n
k=1

n!
k
(
k
2
).

n

∑
k=1

n!

k
(
k

2
) = n!

n

∑
k=1

1

k

k(k − 1)

2

= n!0.5
n−1
∑
i=0

i

= n!0.5
n(n − 1)

2

=
n!

2
(
n

2
)

as desired.

Question 3 a) State and provethe Orbit Counting Lemma (sometimes called Burnside’s Lemma),
relating the number of orbits in a group action G↣X to the number of fixed points of the various
group elements g ∈ G

Proof. Claim: Let G↣X with G,X finite. For all x, we have Orb(x) ⋅ Stab(x) = ∣G∣.

Proof of claim: Let Orb(x) = {x1, ..., xk}. Let {g1, ..., gk} be some corresponding elements such
that gix = xi. Define function

m ∶ (gi, h)↦ gih

where gi ∈ {g1, .., gk}, h ∈ Stab(x). Showing m to be a bijection would show the desired equation.

To show m is 1-1. Suppose gih = gjh
′. Then we know

gihx = gjh
′x

gix = gjx

xi = xj

So i = j and gi = gj . Also note h = g−1i (gih) = g
−1
j (gjh

′) = h′ So we showed (gi, h) = (gj , h′).

To show m is onto, fix g ∈ G. Suppose gx = xi = gix. Let h = g−1i g. Then we have

gihx = gi(g
−1
i g)x = gx

So (gi, g−1i g)↦ g as desired.
(end of proof of claim)
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The Orbit Counting Lemma states that #Orb = 1
∣G∣ ∑g∈G Fix(g). Let O be the set of orbits.

#Orb = ∑
T ∈O

1 = ∑
T ∈O
∑
x∈T

1

∣T ∣
= ∑

T ∈O
∑
x∈T

1

∣Orb(x)∣

= ∑
x∈X

1

∣Orb(x)∣

=
1

∣G∣
∑
x∈X
∣Stab(x)∣

=
1

∣G∣
∑
x∈X

∑
g∈G,g⋅x=x

1

=
1

∣G∣
∑
g∈G

∑
x∈X,g⋅x=x

1

=
1

∣G∣
∑
g∈G

Fix(g)

as desired

b) How many distinguishable 10 bead necklaces can be made using k colors of beads?

Proof. We’ll apply the orbit counting lemma:

#Orb =
1

∣G∣
∑
g∈G

Fix(g)

where G is the group of rotational symmetries, i.e. Z/10. Let G act on the number of colorings,
i.e. G ↣ K10. Given a coloring of the necklace, rotating it would yield the same/equivalent
coloring, in other words, colorings that are in the same orbit are equivalent/the same. So we just
count the number of orbits under this action. What we really need to do is count the number of
colorings that are fixed/looks the same when you rotate it by g.

Say you rotate by 2 clicks at a time. Since rotating would yield the same coloring, this means the
beads {1,3,5,7,9} would have the same color, and so do beads {2,4,6,8,10}. These are cycles
under the permutation given by the rotation by 2 clicks. Each cycle you can color it k colors, so
here we’d have k2 colorings that are fixed under rotating by 2 clicks.

Generalizing, with any rotation g, we’d have knumber of cycles in π(g) number of colorings that are
invariant. I happen to know this fact that the number of cycles in rotating by r clicks is the

3



gcd(10,r). So with this fact, we obtain that

#Orb =
1

∣G∣
∑
g∈G

Fix(g)

=
1

10
(kgcd(0,10) + kgcd(1,10) + kgcd(2,10) + kgcd(3,10) + kgcd(4,10) + kgcd(5,10)

+ kgcd(6,10) + kgcd(7,10) + kgcd(8,10)+k
gcd(9,10)

=
1

10
(k10 + k1 + k2 + k1 + k2 + k5 + k2 + k1 + k2 + k1)

=
1

10
(k10 + 4k + 4k2 + k5)

Question 6 Recall that we call a family of subsets F ⊂ P (n) a k − family if no k + 1 sets
A1,A2, ...,Ak+1 ∈ F satisfy

A1 ⊊ A2 ⊊ ... ⊊ Ak+1

Let F be a k-family in P (n).
a) Prove that if σ is a circular permutation of [n] then at most kn sets from F are intervals with
respect to σ.

Proof. (improved proof) Note an interval has to be non-empty. So lets say the worst case we
start with singleton intervals and try to stuff as many intervals into F as we can. There are n
singleton intervals, and we can expand by appending to it the next element in the cycle, since
it’s a k family, we can have sets at most k big. So for each singleton interval, we can expand k
times and add to F the sets we meet along the way. There are n singleton intervals. So we can
add kn things into F in the worst case. The better case is that the k-family F does not contain
some smaller intervals, say the smallest interval is like size 3, so then we can expand k − 3 times.
That’s why it’s ≤ kn sets.

Proof. (original proof) Let’s count the total number of sets in F that are intervals with respect
to σ and that can also be in a k-family. Define M be the set of minimal elements in F that are
intervals of σ and such that each element in M is in a different chain, i.e. for x, y ∈M,x /⊂ y.

We’ll show that ∣M ∣ ≤ n. WLOG fix the min number in σ to be in the 1st position. WLOG, for
x ∈M , we order the elements in x in the order they appear in σ. We will try to "fit" the x ∈M
into the σ one by one following an increasing order of the earliest position in σ. WLOG say an
x ∈ M starts in position one, for the next set, since the y ∈ M are mutually not a subset of the
others, the ending position of y will have to be after the ending position of x. Say the ending
position of x is the l-th position. If we want to pack as many as possible, we should only advance
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the ending position of the interval 1 at a time. We can do that AT MOST n times before the
ending position will loop around and pass the position l. This is a problem because we pack the
intervals in the order of their starting position, so if an interval that comes later than the first
interval has ending position past l (the ending position of the first interval), this means that the
first interval is a subset of that interval, which contradicts the construction of M .

Note for each x ∈M , we can obtain a new set to add to F by adding the next number in σ that
comes after x. Since F is a k-family, we can do that at most k times. So each x ∈M could bring
at most k things that we can add to F . Since there are at most n things in M , we can add at
most kn things to F .

b) Prove that if F contains ai sets of size i then
n

∑
i=0

ai

(
n
i
)
≤ k.

[Hint: you might want to first prove the case where ∅, [n] ∉ F .]

Proof. (improved proof) We’ll apply the LYM inequality. Recall the LYM inequality says that
given an antichain A, we have ∑n

i=0
ai
(n
i
) ≤ 1. Let M1 be the set of minimal elements in F such that

they’re mutually not related, i.e. M1 is an antichain. We can grow the M1 upwards by adding
the things in 1 level up that are also in F and put those things in M2. Note since F is a k family,
we can have at most k of the Mi that’s all non-empty. Note each of the Mi is an antichain (omit
the detail here you can verify easily). So we have at most k antichains. Apply LYM to the k
antichains and you will get desired answer.

Proof. (original proof) Define C to be the set of maximal chains in P (n). Note the size of C is
n!. Let set S = {(f, c)∣f ∈ F, c ∈ C, f ∈ c}. Note we have

∣S∣ =∑
c
∑

f∈F,f∈c
1 ≤∑

c

k = kn!

because F is a k-family, so for any given chain, we can have at most k things of F in it. At the
same time, we have

∣S∣ =∑
c
∑

f∈F,f∈c
1

= ∑
f∈F
∑
c∶f∈c

1

= ∑
f∈F
∣f ∣!(n − ∣f ∣)!

=∑
i≥0

aii!(n − i)!
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The second equality is a simple interchange of sums. The thrid equality is to count how many
maximal chains a given set can be in. We can permute the elements in the set to decide the path
of the chain going towards the emptyset, and we can permute the elements not in the set to decide
the path of the chain going towards the set [n]. The last equality is couting by the size of f .

Now combining the two expressions obtained above and dividing by n!, we get that ∑i≥0 ai/(
n
i
) ≤ k

as desired

Question 7
a) State and prove Hall’s theorem concerning the existence of matchings saturating X in a bipartite
graph with bipartition X,Y .

Proof. We’ll use induction on ∣X ∣. It would be nice if we can just take off a vertex in X and not
affect the Hall’s condition in the rest of the graph. That happens when every subset of X has a
neighborhood strictly larger than it. So we can take off a vertex in X and one of its neighbors
and Hall’s condition still holds in the new graph.

The problematic case is when there is a set S ⊂ X such that ∣S∣ = N(S). Obviously the graph
restricted to (S,N(S)) satisfies the Hall’s condition so there’s a perfect matching on the subgraph
(S,N(S)). Now we just need to show in (S,N(S))c, Hall’s condition is also satisfied. Fix T ⊂
X/S, if N(T ) doesn’t intersect the N(S), then its fine. Suppose they do intersect. The fear is that
maybe some of T ’s neighbor leaks into N(S) and there is not enough neighbors left in (S,N(S))c.
Denote N1(T ) = N(T ) ∩N(S) and N2(T ) = N(T ) ∩N(S)

c. Note N(S ⊍ T ) = N(S) ⊍N2(T ). If
our fear were to come true, we’d have N2(T ) < ∣T ∣, so we’d have ∣S ⊍ T ∣ < N(S) +N2(T ), this is
a contradiction to our assumption.

Question 8 Let G be a 2-connected graph. Prove that for all v ∈ V (G) there exists u ∈ V (G)
such that u is adjacent to v and also G/{u, v} is connected.

Proof. Fix v ∈ V (G). Since G is 2-connected, removing v is still connected. If a u ∈ N(v)
disconnects the new graph upon removal, it is a cut vertex in the new graph. AFSOC all of
u ∈ N(v) disconnects the new graph upon removal, this means they’re all cut vertices in the new
graph. I claim that the u1, the cut vertex at either end of the block-cut vertex graph, is also a cut
vertex in the old graph. Say this u1 connects end block B to the rest of the graph denoted B′. If
u1 is not a cut vertex in the old graph, it must mean that v has tentacles tethering the 2 parts
together, so v is attached to some internal vertex of the 2 parts, i.e. v is nbors with an interval
vertex in block B. But we literally just said all of v’s neighbors are cut vertices, contradiction.

Question 9 Let G be a graph that does not contain two disjoint odd cylcles. Prove that χ(G) ≤ 5.
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Proof. If G has no odd cycles, then it’s bipartite, so it’s 2-colorable.

If G has 1 odd cycle, let the smallest odd cycle be C, the odd cycle is 3-colorable. And G/C is
bipartite, so it’s 2 colorable. So we can color the whole graph with 5 colors. If it doesn’t have
odd cycle, it’s bipartite and 2-colorable.
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June 2022

Question 1 a) Prove the following identity for any positive integers m,n and any nonnegative
integer r:

(
m + n

r
) =

r

∑
k=0
(
m

k
)(

n

r − k
)

Note: Here (st) = 0 if s < t or t < 0 by convention.

Proof. The two sides of the equation count picking r distinguished m&m’s from m+n distinguised
m&m’s, where m of them are magenta and n of them are navy. Obviously the left counts this.
Now we prove the right also counts this. It separates into cases where there are k m&m’s that
are magenta, each term in the sum is a case. From the navy m&m’s, we pick the rest of the r − k
m&m’s.

b) For an indeterminate q, we define the "q − integer" [n]q as [n]q ∶= 1 + q + ... + qn−1 if n is
a positive integer and [0]q ∶= 0. The "q − factorial" is defined as the product of consecutive
q-integers as [n]q! ∶= [1]q[2]q...[n]q if n is a positive integer, and [0]q! ∶= 1. For a positive integer
s and an integer t, the "q − binomial coefficient" is defined by

(
s

t
)
q
∶=

[s]q!

[t]q![s − t]q!

if s ≥ t ≥ 0, and (st)q ∶= 0 if s < t or t < 0.

Prove or disprove the following q-analog of the identity in part a) (for positive integers m,n and
nonnegative integer r):

(
m + n

r
)
q
=

r

∑
k=0
(
m

k
)
q
(

n

r − k
)
q
qk(n−r+k)

Question 9

Let G be a connected graph with chromatic number at least k + 1, for some positive integer k.
Prove that one can remove k(k−1)

2 edges from G without disconnecting it.

Proof. Note between any 2 color class there is an edge. So we have a Kk+1 graph of color classes.
To remain connected you can remove all the edges and add back in k edges each connecting the
color classes i, i + 1. So you’re removing (k+1)k2 − k =

k(k−1)
2 number of edges.
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May 2021

Question 5 a) State (but you need not prove) Erdos-Ko-Rado’s theorem.

Proof. The Erdos-Ko-Rado theorem gives a bound on the intersecting family of sets of size k. It
says for 1 ≤ k ≤ n

2 and I ⊂ ([n]k ) intersecting, the size of I is at most (n−1k−1).

b) Construct a family of r−subsets of [n] achieving the Erdos-Ko-Rado bound on cardinality.

Proof. Put n in each of the r−subsets, from [n− 1], pick the remaining r − 1 elements. There are
(
n−1
r−1) elements in the family, and they are intersecting because n is in every set.

Question 9 a) Let T1 and T2 be two spanning trees of a connected graph G. Prove that T1 can
be transformed into T2 through a sequence of intermediate trees, each arising from the previous
one by removing an edge and adding another.

Proof. Recall in class we proved for all e ∈ T1/T2, exists e′ ∈ T2/T1 such that T1−e+e
′ and T2−e

′+e
are spanning trees. Let D = T1∆T2 be the synmmetric difference of the edges in the 2 trees. Note
∣D∣ is fintie. In T1, iteraively replace an edge in D∩T1 with some edge in T2/T1. This replacement
strictly decreases the size of D. Since ∣D∣ finite, the process terminates and we end up with D = ∅,
which implies T1 = T2.

9



June 2020

Question 2 A circle is divided into p equal arcs, where p is a prime number. Each arc is colored
by one of the n different colors. How many nonequivalent colorings are there? Two colorings are
equivalent if one of them can be obtained from the other one by a rotation of the circle about its
center.

Proof. We’ll use the orbit counting lemma that states #Orb = 1
∣G∣ ∑g∈G Fix(g). As explained

above (2023 question 3) the orbits are the equivalence classes of colorings. Here the identity fixes
every coloring so there are np colorings. Rotating by any other amount would just yield 1 cycle
because p is prime (simple fact from undergraduate proof class). And each cycle must be colored
the same color. So for all the other p − 1 rotations, each would yield n different colorings. So at
the end we have the number of distinct colorings is

1

p
(np
+ (p − 1)n)

Question 4
a) State (without proving) Sperner’s Lemma concerning the maximum size of an antichain in
p(n).

Proof. Sperner’s lemma is a corollary of the LYM inequality. The LYM inequality states that the
probability of landing in an antichain is spread across the levels, ∑n

i=0
ai
(n
i
) ≤ 1. Since ( n

⌊n
2
⌋) is the

biggest the denominator can get, ai
( n
⌊n2 ⌋
) ≤

ai
(n
i
) . So we have ∣A∣

( n
⌊n2 ⌋
) ≤ ∑

n
i=0

ai
(n
i
) ≤ 1, which bounds the

size of the antichain by ( n
⌊n
2
⌋).

b) Let a1, ..., an be real numbers of absolute value at least one. For any open unit interval I, prove
that there are atmost ( n

⌊n
2
⌋) vectors ϵ = (ϵ1, ..., ϵn) ∈ {−1,1}

n (i.e. ϵ is a vector whose entries are 1
or -1) such that ∑n

i=1 ϵiai ∈ I.

Proof. For ∑n
i=1 ϵiai, we attach to it the set {i∣aiϵi > 0} ⊂ [n]. Note this set contains the indices

where aiϵi is positive, and actually greater than or equal to 1 because the ai have absolute
value at least 1. Say x, y ∈ P (n), x ⊊ y, we know that the corresponding sums Sx, Sy would be
Sx = ∑i∈x ∣ai∣ −∑j∉x ∣aj ∣ = ∑i∈x ∣ai∣ −∑j∈y/x ∣aj ∣ −∑k∉y ∣ak∣ and Sy = ∑i∈x ∣ai∣ +∑j∈y/x ∣aj ∣ −∑k∉y ∣ak∣.
You see that

∣Sy − Sx∣ = ∣∑
i∈x
∣ai∣ + ∑

j∈y/x
∣aj ∣ −∑

k∉y
∣ak∣ −∑

i∈x
∣ai∣ + ∑

j∈y/x
∣aj ∣ +∑

k∉y
∣ak∣∣ = 2 ∑

j∈y/x
∣aj ∣ ≥ 1
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The last equality is because x ≠ y. Note ∣Sy − Sx∣ = ∣Sx − Sy ∣, so this means that if sets x, y are
comparable, then the difference of their sum will be at least 1. The converse would imply that if
the difference of the sum is < 1, then the two sets x, y will not be comparable, in other words, x, y
are in an antichain. So given an open unit interval I, any vectors in it would be in an antichain
with each other. By Sperner’s lemma, there can be at most ( n

⌊n
2
⌋) of them.

Question 7 The parts of this question are unrelated.

a) Let G be a graph containing k edge-disjoint spanning trees, and let e1, ..., ek be distinct edges
in G. Prove that G has edge-disjoint spanning trees T1, ..., Tk such that ei ∈ Ti for 1 ≤ i ≤ k.

Proof. We’ll show the following algorithm will give us what we want. At each iteration i, label
weight of the edges ei = 0, ek =∞ for k ≠ i and the rest of the edges just label 1. Apply Kruskal’s
algorithm to obtain Ti. For the next iteration, delete the edges of Ti from the graph and repeat.
Note since ei has the minimum weight, it will be in the spanning tree Ti. It remains to show that
we can in fact successfully run this algorithm for k iterations.

The only criterion for the the algorithm to run successfully is that there is a spanning tree Ti

containing edge ei in the graph. What could go wrong is that there’s no spanning tree or edge
ei got deleted in earlier iterations. In the first case, it implies that the graph is not connected
anymore, which means there is a set of edges of size ≤ i − 1 < k that is like a "cut edge" in the
graph. This would make it impossible to have k edge-disjoint spanning trees, so a contradiction.

Now let’s suppose that edge ei got deleted in an earlier iteration j < i ≤ k. In iteration j, edge
ei got selected because it was the min weight edge that doesn’t create a cycle when added to the
tree. Note ei had weight infinity in iteration j, this means that all other (non-infinity) edges that
are not one of the el’s must create a cycle when added. This implies that ei connect 2 distinct
components of the current tree. Say ei = uv, if the edge did not connect 2 distinct components,
i.e. ei is within 1 component of the tree, then we know that u ∼ v in the currenct tree, so added ei
would create a cycle, makes no sense to add it then. Now, the algorithm chose edge ei possibly due
to tie breaking with other infinity-edges. So there might be other infinity edge that connect the 2
components that edge ei is connecting. Note ej (j is our current iteration and ej has already been
added as the first edge) cannot be connecting the 2 components because if it did then there would
be a path from u to v, which then again means it would make no sense to add ei now. There
can also be no non-infinity edges connecting the 2 components, because the kruskal algorithm
would have chosen it instead and we would never even consider edge ei. So there are at most k−1
edges that connect the 2 components. Same argument as the previous paragraph, this implies
that there can’t be k edge-disjoint spanning trees.

Question 9 Let n ≥ 6 be even, and let F = {e1, ..., en−1} be a collection of n− 1 different edges of
Kn that are not all incident with one same vertex. Show that Kn − F has a perfect matching.
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Proof. We induct on n ≥ 6.

BC: The base case is small enough to do by inspection.

IH: Suppose for even n ≥ 6, delete n−1 edges that are not all incident with one same vertex, then
the remaining graph has a perfect matching.

IS: Let there be n + 2 vertices with n even. Delete n + 1 edges. Consider the induced graph H
of the deleted edges, i.e. the deleted edges are edges in the induced graph. If H contain a tree
with ≥ 3 vertices, and we know any tree would have 2 leaves. Delete the 2 leaves from the original
graph. Now we end up with n vertices. And since the tree has size ≥ 3, we know the 2 leaves
are not connected in H, so we also removes 2 deleted edges, so now there are only n − 1 deleted
edges. Now we can apply the IH to the remaining graph to obtain a perfect matching. Also note
that since the 2 leaves we removed are not connected in H, we know it’s connected in the original
graph and just add the edge between the 2 vertices into the matching. Now we have a perfect
matchiing for all the vertices.

Now suppose H does not contain any tree. This would imply that H does not invole all the n+ 2
vertices. Because if it did involve all the n+2 vertices and it has only n+1 edges, it would literally
be a tree. So there is a vertex that is not incident to any deleted edges in F , let’s remove this
vertex. Now we need to remove 1 more vertex. Just remove any vertex in H. So now we have
n vertices left. There’s a problem though, we might have removed more than 2 deleted edges
from F so now in the remaining graph, the number of deleted edges is less than n − 1. Well, just
arbitrarily remove more edges and make sure not to violate the condition on deleted edges. So
now the remaining graph can use the IH to obtain a perfect matching. And note the edges used
in this perfect matching are also present in the original graph (like the fact that we aribitrarily
deleted some edges to satisfy the IH does not matter here). Also note the 2 vertices we deleted
are adjacent to each other because one of the vertex is not incident to any of the deleted edges,
so just add that edge to the matching and we have a perfect matching for the graph.

12



January 2017

Question 1

a) Solve the recurrence
⎧⎪⎪
⎨
⎪⎪⎩

an = an−1 + 5an−2 + 3an−3 n ≥ 3

a0 = 0, a1 = 2, a2 = 4

Proof. The characteristic polynomial of the recurrence is x3 −x2 −5x−3 = (x−3)(x+1)2 = 0 with
roots 3,−1 each of multiplicity 1 and 2. To factor the polynomials, one could use the rational root
theorem to deduce that one of the roots of ±3 and use long division to obtain the other factor.
Theorem 2.2.7 in the boook suggests that the solution looks like an = A13

n+A2(−1)
n+A3n(−1)

n.
Solving the system of equation A1 +A2 = a0 = 1,3A1 +A2 +A3 = a1 = 2,9A1 +A2 + 3A3 = a2 = 4,
we obtain that A1 =

9
16 ,A2 =

7
16 ,A3 = −

3
4 . So we get that

an =
9

16
3n +

7

16
(−1)n −

3

4
n(−1)n

b) Prove that every polynomial satisfies some finite order, linear, homogeneous, constant coeffi-
cient recurrence.

Proof. WLOG let polynomial be xk − c1x
k−1 − ... − ckx0. The polynomial is monic because you

can always divide the coefficient of the highest term if it was not. Now the recurrence an =
c1an−1 + ... + ckan−k is satisfied.

Question 8 Prove that if G is an X,Y −bigraph with ∣X ∣ = ∣Y ∣ = n, then α′(G) ≥min{2δ(G), n}.
[Recall that α′(G) is the size of a largest matching in G.]

Proof. We proved in class that α′ = minS⊂X{∣X ∣ − defect(S)}. So we’ll show minS⊂X{∣X ∣ −
defect(S)} ≥ min{2δ, n} by showing for any S ⊂ X, ∣X ∣ − defect(S) ≥ 2δ or ∣X ∣ − defect(S) ≥ n.
If ∣X ∣ − defect(S) ≥ n, then we’re good. So suppose that ∣X ∣ − defect(S) < n. Rearranging the
inequality and substituting in ∣X ∣ and defect(S), we get that N(S) < ∣S∣. Note S is not empty
because if S = ∅, then ∣X ∣ − defect(S) = n ≥ n, a contradiction. So there is some vertex in S, so
the neighborhood is at least δ big, i.e. N(S) ≥ δ. Note Y /N(S) ≠ ∅, because if it was emptyset,
then n ≥ ∣S∣ > ∣N(S)∣ = ∣Y ∣ = n is a contradiction. So there’s some vertex in Y /N(S), this vertex
must extend all of its ≥ δ edges into X/S because if some of its edges went into S, it would have
been in N(S) instead of Y /N(S). So ∣X/S∣ = n − ∣S∣ ≥ δ as well. So we have

∣X ∣ − defect(S) = n − ∣S∣ +N(S) ≥ 2δ

as desired.
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Question 9 The graph below are called the claw and the paw respectively. Prove that a connected
graph G that contains a cycle and does not contain either a claw or a paw as an induced subgraph
is Hamiltonion.

Proof. Take the longest cycle there is in G. AFSOC G is not hamiltonian, this means that there
is some vertex that did not get covered. Since G is connected, it must be attached to the cycle,
as shown in graph. Now we enumerate all the possible induced subgraphs of the four green
vertices. Four of the possible induced subgraphs are claw or paw, so we found a contradiction.
The remaining four we can augment the cycle by following the pink lines, contradicting that it’s
the longest cycle.
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